Sie interessieren sich dafür, mit welchen Methoden Unternehmen Daten aus sozialen Medien analysieren? Über soziale Medien, wie bspw. Online Social Networks, stehen Unternehmen enorme Datenmengen zur Verfügung. Die zielgerichtete und fundierte Analyse dieser Daten ermöglicht eine verbesserte Entscheidungsunterstützung und birgt großes Potenzial, bspw. in den Bereichen Produktentwicklung, Marketing und Customer Relationship Management. In diesem Zertifikatskurs werden hierfür zentrale Methoden vermittelt und fallstudienbasiert illustriert.
Big (Social) Data Analytics – Methoden und Anwendungen
Termine / Veranstaltungsort / Kosten
Termin | Veranstaltungsort | Kosten |
---|---|---|
01.04.2024 - 30.09.2024 Artikel-Nr.: UUL-Business-ZERT-BSDA-202404 | Ulm & online | 1.900,00 € |
Veranstalter und Veranstaltungsort
Veranstalter
School of Advanced Professional Studies Universität Ulm
Veranstaltungsort
Universität Ulm
School of Advanced Professional Studies
Oberberghof 7
89081 Ulm
Online
Zielgruppe und Voraussetzungen
Zielgruppe
Der Zertifikatskurs richtet sich an Berufseinsteigende, an junge Führungskräfte sowie Projektleiter*innen und Berater*innen, die ihre Kompetenzen im Umgang mit den Herausforderungen „Industrie 4.0“ und „Big Data“ optimal ausbauen und vertiefen wollen.
Teilnahmevoraussetzungen
Voraussetzung ist ein erster Hochschulabschluss, z. B. Bachelor, Diplom, Staatsexamen etc., in den Studiengängen Betriebswirtschaftslehre, Wirtschaftswissenschaften, Elektrotechnik, Informatik, Maschinenbau, Mathematik, Physik, Wirtschaftsmathematik oder eines vergleichbaren Studiengangs oder ein als gleichwertig anerkannter Abschluss.
Inhalte und Lernziele
Inhalte
- Einführung: Social Media Analytics als hoch relevantes Thema
- Überblick und Grundlagen zu Social Media Analytics: Strategische Aspekte, Gestaltungsbereiche und wesentliche Bestandteile
- Social Media Analytics – Methoden und Anwendungen:
– Textanalyse (z. B. Klassifikation von Texten mittels Support Vector Machines, Sentiment-Analyse)
– Soziale Netzwerkanalyse (z. B. Identifizierung einflussreicher Nutzer*innen mithilfe von Vernetzungsmaßen, Community Detection)
– Prognose (z. B. Markov-Modelle zur Prognose von Nutzer*innenverhalten in sozialen Netzwerken, Simulation, Regression) - Zusammenfassung und kritische Würdigung
Ablauf
Das Online-Studium findet im Selbststudium statt. Für das Selbststudium stehen zum einen Video-Vorlesungen bereit, die den Teilnehmenden die Zertifikatskursinhalte anschaulich darlegen. Als schriftliches Material wird das Grundlagenbuch von Kemper und Eickler mit dem Titel „Datenbanksysteme. Eine Einführung“ empfohlen.
In den Videos und in Begleitung durch ein E-Learning-System werden die Teilnehmenden auf entsprechende Abschnitte des Buchs verwiesen. Der Stoff wurde in Lernabschnitte unterteilt, die durch Multiple- und Single-Choice-Fragen, Quizzes und Übungsaufgaben begleitet werden.
Der Mentor/die Mentorin des Zertifikatskurses bietet in regelmäßigen Abständen Online-Sprechstunden in Form von Seminaren an, die die Teilnehmenden bei der Bearbeitung des Lernstoffs unterstützen. Außerdem steht ein Forum für den Austausch der Teilnehmenden untereinander bereit.
Das erworbene Wissen wird an insgesamt vier Präsenztagen vertieft. An den Präsenzterminen werden Übungsaufgaben teilweise auch in Gruppenarbeit gelöst.
Lernziele
Die Teilnehmenden sind nach erfolgreicher Absolvierung des Zertifikatskurses in der Lage:
- die Grundlagen der zielgerichteten und fundierten Analyse von Big Social Data zu erläutern
- die wesentlichen Schritte und Gestaltungsbereiche von Social Media Analytics (z. B. Auslesen, Modellieren, Analysieren und Erfassen von Daten aus sozialen Medien) zu beschreiben
- Methoden zur Analyse von umfangreichen Mengen an strukturierten und unstrukturierten Daten zu beurteilen und anzuwenden
- diese Methoden zur Lösung praktischer Problemstellungen einzusetzen (z. B. Analyse realer Datensätze mithilfe von Software-Werkzeugen), die Ergebnisse zu interpretieren und Handlungsempfehlungen abzuleiten
Format, Abschluss, Qualitätssicherung
Lehr- / Lernformat
Blended-Learning
Abschluss
Bei erfolgreichem Abschluss des Zertifikatskurses erhalten Sie ein Zertifikat sowie ein Supplement, das die Inhalte des Zertifikatskurses als Übersicht auflistet.
Zeitaufwand
Der Zertifikatskurs erfordert einen Bearbeitungsaufwand von insgesamt 180 Stunden.
Sprache
Deutsch
Termine und Fristen
Anmeldefrist
Anmeldefrist für das Sommersemester: 01. Oktober bis 15. März Anmeldefrist für das Wintersemester: 01. April bis 15. September
Dozent*innen
Prof. Dr. Mathias Klier
Professor im Institut für Business Analytics, Universität Ulm
Roland Graef
Wissenschaftlicher Mitarbeiter im Institut für Business Analytics, Universität Ulm
Katharina Kaufmann
Wissenschaftliche Mitarbeiterin im Institut für Business Analytics, Universität Ulm
Zum nachlesen
Sie wollen Ihr Wissen vertiefen?
Schauen Sie sich weitere Zertifikatskurse zum Thema Business Analytics an oder informieren Sie sich über den Master Business Analytics: