Sie möchten erfahren welche numerischen Methoden für die Analyse großer Datenmengen verwendet werden? Durch das Wachstum an Datenvolumen stehen Unternehmen vor der Herausforderung, diese extrem großen Datenmengen („Big Data“) speichern und analysieren zu können. Herkömmliche algorithmische Methoden, die alle Daten betrachten, sind entweder nicht mehr anwendbar oder benötigen zu lange Rechenzeiten. In diesem Zertifikatskurs werden Sie numerische Methoden, Verfahren und Algorithmen kennenlernen, die auch für große Datenmengen noch effizient arbeiten und so erlauben, aus größeren Datenmengen Muster zu erkennen und wichtige Informationen zu extrahieren.
Numerische Methoden für Data Science
Termine / Veranstaltungsort / Kosten
Termin | Veranstaltungsort | Kosten |
---|---|---|
01.10.2023 - 31.03.2024 Artikel-Nr.: UUL-Business-ZERT-Num-202310 | Ulm & online | 1.900,00 € |
Veranstalter und Veranstaltungsort
Veranstalter
School of Advanced Professional Studies Universität Ulm
Veranstaltungsort
Universität Ulm
Online
Zielgruppe und Voraussetzungen
Zielgruppe
Dieser Zertifikatskurs richtet sich an Berufseinsteigende, an junge Führungskräfte sowie Projektleitende und Beraterende, die ihre Kompetenzen im Umgang mit den Herausforderungen „Industrie 4.0“ und „Big Data“ optimal ausbauen und vertiefen wollen.
Teilnahmevoraussetzungen
Die Teilnehmenden sollten mathematische Kenntnisse auf Bachelor-Niveau, insbesondere Lineare Algebra (Matrizen, lineare Gleichungssysteme, Eigenwerte und -vektoren, Normen, Skalarprodukte) und Analysis (Funktionen mehrerer Veränderlicher, Satz von Taylor) beherrschen.
Inhalte und Lernziele
Inhalte
- Numerische Lineare Algebra für Big Data-Anwendungen: Lösung linearer Gleichungssysteme, Eigenwerte und -vektoren, Singulärwertzerlegung
- Numerische Lösung hochdimensionaler nichtlinearer Gleichungssysteme
- Numerische Verfahren für Kalibrierungs- und Maximum-Likelihood-Probleme
- Numerische Lösung hochdimensionaler nichtlinearer Gleichungssysteme
- Standard-Software für derartige Problemstellungen
Ablauf
Das Online-Studium findet im Selbststudium und in Form von Gruppenarbeit statt. Für das Selbststudium steht ein ausführliches Skript zur Verfügung. Die zentralen Inhalte und zugehörige Beispiele werden zudem in kurzen Videos erläutert. Das lesefreundliche Skript ist nach dem didaktischen Konzept der Universität Ulm für berufsbegleitend Teilnehmende aufbereitet.
Um die vermittelten Inhalte zu festigen, werden in regelmäßigen Abständen Übungsblätter veröffentlicht, deren Lösungen von den Teilnehmenden und dem Mentor/der Mentorin gemeinsam zu den Präsenzterminen vorgestellt werden. Die Präsenztermine dienen außerdem der Klärung offener inhaltlicher Fragen und der gemeinsamen Reflexion der Zertifikatskursinhalte mit den Dozierenden.
Der Mentor/die Mentorin des Zertifikatskurses bietet zudem in regelmäßigen Abständen Online-Sprechstunden an, die die Teilnehmenden bei der Bearbeitung des Lernstoffs unterstützen. Außerdem steht ein weiteres Forum für den Austausch der Teilnehmenden untereinander bereit.
Lernziele
Nach erfolgreichem Abschluss des Zertifikatskurses können die Teilnehmenden
- die besonderen Herausforderungen bei Big Data-Anwendungen in der Numerik einschätzen und beurteilen
- ausgewählte Algorithmen für hochdimensionale Probleme zu analysieren, bewerten und anwenden
- vorhandene (kommerzielle) Software-Pakete hinsichtlich deren Anwendbarkeit für Big Data bewerten
Format, Abschluss, Qualitätssicherung
Lehr- / Lernformat
Blended-Learning
Abschluss
Bei erfolgreichem Abschluss des Zertifikatskurses erhalten Sie ein Zertifikat sowie ein Supplement, das die Inhalte des Zertifikatskurses als Übersicht auflistet.
Zeitaufwand
Der Zertifikatskurs erfordert einen Bearbeitungsaufwand von insgesamt 180 Stunden.
Creditpoints (ECTS)
6
Sprache
Deutsch
Termine und Fristen
Kurstermine
Die Termine für die Präsenzveranstaltungen und die Prüfungstermine werden noch bekannt gegeben.
Anmeldefrist
Anmeldefrist für das Sommersemester: 01. Oktober bis 15. März Anmeldefrist für das Wintersemester: 01. April bis 15. September
Dozent*innen
Prof. Dr. Karsten Urban
Leiter des Instituts für Numerische Mathematik
Prof. Dr. Stefan Funken
Professor im Institut für Numerische Mathematik
Laura Burr
Wissenschaftliche Mitarbeiterin im Institut für Numerische Mathematik
Zum nachlesen
Sie wollen Ihr Wissen vertiefen?
Schauen Sie sich weitere Zertifikatskurse zum Thema Business Analytics an oder informieren Sie sich über den Master Business Analytics: